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1 Introduction

The duality between open and closed string theories is a fascinating area of string theory.

This duality is often understood as a geometric transition, where topologically distinct

manifolds are used for the open or closed string theory, the prototypical example being

the duality between the resolved and deformed conifolds [1–3]. At the level of topological

string theory, for the A-model transition the closed string side is the resolved conifold and

the open string side is the deformed conifold, for the B-model transition this is reversed.

The study of the B-model conifold transition and its generalizations led to the intro-

duction of matrix models as a way to describe holomorphic Chern-Simon’s (HCS) theory

reduced to the 2-cycles of the generalized conifold [4]. This is in turn directly related to

four dimensional N = 1 Yang-Mills theory, because the partition function of the topological

string which was used to engineer the Yang-Mills theory gives the low energy effective super-

potential [5, 6]. This is now known as Dijkgraaf-Vafa (DV) theory. The connection between

matrix models and superpotentials has also been uncovered directly in the field theory [7, 8].

Matrix models were introduced into the topological A-model from a very different

standpoint by Marino [9], where he presented a matrix model description of Chern-Simons

(CS) theory on certain 3-manifolds. This matrix model always has a quadratic potential,
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but it has a rather strange measure which encodes the different geometries, when this 3-

manifold is S3 this is the Haar measure on SU(N). This work was extended in [10] where

they considered the A-model open topological string on T ∗(S3/Zp) (corresponding to CS

theory on S3/Zp [11]) and also the mirror geometry (X̃). By using similar reasoning as

in [4] they were able to derive a matrix model for HCS theory reduced to P
1’s in X̃ . As

expected but still quite remarkably, for each p HCS on X̃ and CS theory on S3/Zp are

described by identical matrix models. Many of the ideas at work here (pre matrix model)

are covered in the great review paper by Marino [12].

So essentially, by studying the topological A-model and using mirror symmetry,

Dijkgraaf-Vafa (DV) theory was extended to a new class of Calabi-Yau manifolds. Now by

the general principles of DV theory, special geometry on the closed string dual geometry

of X̃ (call it X), should reduce to special geometry on a Riemann surface in X, and this

surface should be the spectral curve of the aforementioned matrix model. For the case

of the A-model on T ∗S3, the spectral curve was shown to coincide with the non-trivial

Riemann surface in X and the leading order (in gs) free energy of the matrix model was

shown to agree with the known result. In [13] the free energy of this matrix model was

calculated to all orders and shown to agree with known results [1]. In [14] the orientifold of

the conifold was considered and the subleading order free energy was shown to agree with

known results [15].

In this paper we investigate the matrix model of CS theory on S3/Zp. It was shown

in [10] that this matrix model has p cuts each at the position of a P
1 in the blown up 3-fold

and it was noticed that this model looks similar to a p-matrix model. We will show that

the resolvent has square root cuts which implies that really it is a single matrix model with

p cuts. We then find that the spectral curve is a genus (p − 1) Riemann surface with four

points deleted and find the equation for this curve. For the case of p = 2 we compare our

surface to that obtained from the Hori-Vafa mirror.

This paper is organized as follows. In section 2. we discuss the geometrical structures

which are involved in the large N duality we are considering and in mirror symmetry of these

dualities. In section 3 we review the solution of the matrix model for CS theory on S3 and

also solve it with our new method. In sections 4 and 5 we solve the case of S3/Z2 and S3/Zp

respectively. In section 6. we outline our calculation of the free energy for S3/Z2 which we

view as a non-trivial check of our method, the full calculation is presented in the appendix.

2 Geometry

The first geometric transition to be studied was the A-model conifold transition of

Gopakumar and Vafa [1]. They considered the closed topological A-model on the resolved

conifold (O−1 + O−1 → P
1) and argued that it is equivalent to the open topological

A-model on the deformed conifold (T ∗(S3)). This has been extended significantly to a

large class of toric Calabi-Yau’s [16–18] but not including the expected transition between

Ap−1 → P
1 and S3/Zp.

Heuristically, taking a Zp orbifold on both sides of the A-model conifold transition

should produce a transition between some Ap−1 fibration over P
1 on the closed string side
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and T ∗(S3/Zp) on the open string side. In [10] the matrix model of CS on S3/Z2 was

studied, its free energy was calculated perturbatively and was shown to agree with the

closed A-model on O(−K)→P
1×P

1 (which is a trivial A1 fibration over P
1), thus implying

that T ∗(S3/Z2) undergoes a geometric transition to O(−K)→P
1 × P

1. For the case of

T ∗(S3/Zp) the Riemann surface embedded in X is given by the Hori-Vafa mirror map,

which we will now briefly describe.

By studying T-duality on T 3 fibres of an arbitrary toric Calabi-Yau manifold [19], a

mirror map was derived. This map can be reduced to the following operation. Take a toric

web diagram1 of a toric CY threefold M , then consider the Riemann surface obtained by

thickening each line into a cylinder. This Riemann surface will be

F (eu, ev) = 0, (2.1)

and then the 3-fold mirror to M is given by

xy = F (eu, ev). (2.2)

The Hori-Vafa mirror map gives F (eu, ev) explicitly. The various geometries and dualities

involved here are shown in figure 1.

This map gives the mirror to the resolved conifold (O−1 + O−1→P
1) to be

xy = (ev − 1)(eu+v − 1) − 1 + et ≡ Fc(e
u, ev) (2.3)

and the spectral curve of the appropriate matrix model (CS theory on S3) was shown

in [10] to be given by Fc(e
u, ev) = 0. In this paper we further study this by reconsidering

the general case of CS theory on T ∗(S3/Zp). The mirror (X̃) of T ∗(S3/Zp) is given by

blowing up the singular 3-fold

xy = (ev − 1)(ev+pu − 1) ≡ Fp(e
u, ev). (2.4)

We will find that the associated matrix model has a spectral curve which is a genus (p− 1)

Riemann surface with four points deleted, given by a certain complex structure deformation

of Fp(e
u, ev) = 0. Whilst we cannot calculate precisely the complex structure parameters,

for the case p = 2 we can give an expansion in the ’t Hooft parameters, which in principle

could be generalized to p > 2. We also find which monomials appear in the deformation.

All this relies on our showing that the matrix model is a single matrix model with p square

root cuts.2

3 Chern-Simons matrix model on S3

In this section we review the matrix model that describes CS theory on S3 [10]. We study

this model with a new method we have developed, a method which generalizes nicely to

S3/Zp

1a toric web diagram is a trivalent graph such that three unit vectors emenating from each node sum to

zero [20], it encodes the singular structure of the T 3 fibration.
2In [10] it was suggested that one could view it as a p-matrix model, this would produce a p-sheeted

Riemann surface as for the quiver matrix model [21–23].
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Figure 1. Large N dualities and mirror symmetry. a) T ∗(S3/Zp) represented by a deformation of

a toric diagram [25] b) The mirror to T ∗(S3/Zp) c) Schematic picture of the toric web of an Ap−1

fibration over P
1 d) The Hori-Vafa mirror map gives a bundle over a genus p− 1 Riemann surface,

where the Riemann surface is simply a thickening of the toric web diagram

3.1 Solution by contour integral

The matrix integral is given by

Z ∼

∫ ∏

i

dui∆
2(u) exp

(
−

1

gs

∑

i

u2
i /2

)
(3.1)

where the group measure is an analytic continuation of the Haar measure,

∆(u) =
∏

i<j

2 sinh

(
ui − uj

2

)
. (3.2)
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Although the measure is periodic, the potential is not, therefore the domain of integration

is non-compact. The equation of motion for each eigenvalue is

1

gs
ui =

∑

j 6=i

coth

(
ui − uj

2

)
. (3.3)

In general, the form of the resolvent can be inferred from the function on the r.h.s. of

the equations of motion and the measure (3.2). In this case it is

ω(z) = gs

∑

i

coth

(
z − ui

2

)
. (3.4)

We then multiply (3.3) by coth((z − ui)/2), sum over eigenvalues and take the large N

limit. This leads to the following loop equation

(
ω(z)

2

)2

− z
ω(z)

2
= f(z) +

1

4
S2, (3.5)

with

f(z) =
1

2
gs

∑

i

(ui − z) coth

(
z − ui

2

)
(3.6)

being a regular function. Eq. (3.5) shows that the resolvent acquires a square root cut in

the large N limit and that there is only one cut.

The spectral curve is obtained by gluing two infinite cylinders along the cut. There

are two independent cycles. The A cycle is a contour around the cut, the B cycle starts

at infinity on the classical sheet where the resolvent is finite and goes to the other sheet

through the cut. We call S = gsN the ’t Hooft parameter. From equation (3.4), we get

the limiting value of the resolvent,

lim
z→∞

ω(z) = S (3.7)

One also has to fix the period over the A-cycle

πiS =

∮

A

ω(z)

4
dz. (3.8)

The last condition is equivalent to ω̃(z), the other branch of the resolvent, having the

limiting value

lim
z→−∞

ω̃(z) = −S. (3.9)

This agrees with the definition (3.4). All these conditions are sufficient to find the resolvent.

We review briefly how it is done in [10].

The equation of motion can be written a little differently by introducing a new resolvent

v(Z) ≡ gs

∑

i

Ui

Ui − Z
(3.10)
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with Ui = eui and Z = ez. Importantly, both v(Z) and ω(Z) have the same singular

behaviour, the relation between them is given by

ω(Z) = S − 2v(Z). (3.11)

The problem is now essentially a Hermitian matrix model with a logarithmic potential,

which leads by standard arguments [24] to

− 2v(Z) =
√

(Z − a)(Z − b)

∮

C

dX

2πi

log(Xe−S)

X − Z

1√
(X − a)(X − b)

, (3.12)

where the contour C encircles the cut but not the point Z. The normalization conditions

at ±∞ fix the end points of the cut and the final answer is

ω(Z) = log

(
e−S/2

2

(
Z + 1 −

√
(1 + Z)2 − 4ZeS

))
. (3.13)

The spectral curve is the surface where the resolvent is well defined, in this case it is given

by (as advertised after eq. (2.3))

(ev − 1)(eu+v − 1) + eS − 1 = 0, (3.14)

where, u ≡ z.

Although this procedure is not very lengthy it becomes difficult even for the case of

S3/Z2 lens space.

3.2 Solution by a regular function

We have found another way of finding the resolvent, this method will easily generalize to

the case of S3/Zp.

Let ω+ be the value of the resolvent on one edge of the cut and ω− be the value of the

resolvent on the other edge. From the large N limit of (3.3), it is clear that

ω+(z)

2
+

ω−(z)

2
= z. (3.15)

We then construct the function

g(Z) ≡ eω/2 + Ze−ω/2. (3.16)

which is regular everywhere except at infinity. The limiting behavior of the resolvent will

completely determine this function,

lim
Z→∞

g(Z) = e−S/2Z, (3.17)

lim
Z→0

g(Z) = e−S/2. (3.18)

The unique function that satisfies these conditions is

g(Z) = e−S/2(Z + 1). (3.19)
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Now the quadratic equation (3.16) gives the resolvent explicitly,

eω/2 =
1

2

(
g(Z) −

√
g2(Z) − 4Z

)
. (3.20)

This is the same resolvent as (3.13) that is obtained using the contour integral representa-

tion and thus we get the same spectral curve (3.14).

Let us summarize the main strategy. From the large N limit of the equation of motion

we can deduce that the resolvent has a square root cut, then the value of the resolvent on

one edge of the cut can be simply related to the value of the resolvent on the other edge of

the cut. Knowing this, one has to construct a function of the resolvent that is regular every-

where except infinity. The main ingredients are the functions eω/2 and e−ω/2. Once such a

function is found, eω/2 can be written as a solution to a quadratic equation. This strategy

will be shown to work for all Lens spaces. For S3/Zp with p even, it is also possible to con-

struct a function which is square root branched on each cut and from this, solve for ω(Z).

4 S3/Z2 Lens space resolvent

We now employ the strategy from the previous section for the geometry S3/Z2. We refer

the reader to [10] for a derivation of the Lens space matrix model but the reader can also

just take (4.1) as a starting point. The partition function for CS theory on S3/Z2 is given

by the integral over two sets of eigenvalues

Z ∼

∫ ∏

i

dui

∏

α

dµα∆2(u, µ) exp

(
−

1

gs
V (u, µ)

)
, (4.1)

where the measure is

∆(u, µ) =
∏

i<j

2 sinh

(
ui − uj

2

) ∏

α<β

2 sinh

(
µα − µβ

2

)∏

i,α

2 cosh

(
ui − µα

2

)
(4.2)

and i∈ (1, N1), α∈ (1, N2). Anticipating taking the large N limit we also introduce two ’t

Hooft parameters S1 = gsN1 and S2 = gsN2 and S = S1 + S2. The potential is

V (u, µ) =

(
2
∑

i

u2
i + 2

∑

α

µ2
α

)
/2, (4.3)

and the equations of motion for each eigenvalue are

2ui = gs

∑

j 6=i

coth

(
ui − uj

2

)
+ gs

∑

α

tanh

(
ui − µα

2

)
(4.4)

2µα = gs

∑

β 6=α

coth

(
µα − µβ

2

)
+ gs

∑

i

tanh

(
µα − ui

2

)
. (4.5)
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We define the resolvents as

ω(z) = gs

∑

i

coth

(
z − ui

2

)
+ gs

∑

α

tanh

(
z − µα

2

)
. (4.6)

ω1(z) = gs

∑

i

coth

(
z − ui

2

)
, (4.7)

ω2(z) = gs

∑

α

coth

(
z − µα

2

)
, (4.8)

so the relation between them reads

ω(z) = ω1(z) + ω2(z − iπ). (4.9)

4.1 Solution by a regular function

Now we multiply equation (4.4) by ‘coth((z−ui)/2)’ and sum over i, as well as multiplying

equation (4.5) by ‘tanh((z−µα)/2)’ and summing over α. Then we add these two equations

and take the large N limit, with the result being

(
ω(z)

2

)2

− 2z
ω1(z)

2
− 2(z − iπ)

ω2(z − iπ)

2
= f(z) (4.10)

where

f(z) = gs

∑

i

(ui − z) coth

(
z − ui

2

)
+ gs

∑

α

(µα − (z − iπ)) tanh

(
z − µα

2

)
+

1

4
S2 (4.11)

is a regular function. We can write (4.10) in two ways,

(
ω(z)

4

)2

− (z − iπ)
ω(z)

4
− iπ

ω1(z)

4
=

f(z)

4
, (4.12)

(
ω(z + iπ)

4

)2

− (z + iπ)
ω(z + iπ)

4
+ iπ

ω2(z)

4
=

f(z + iπ)

4
. (4.13)

Now we make an important assumption, we assume that the eigenvalues spread only along

the real line. For general multi matrix models this is not true [21–23]. However as we

will see this assumption leads to the correct result for our case. It follows that if ω1(z)

jumps at a point z then ω2(z− iπ) does not and vice versa. Note that we do not make any

assumption on the type of the cuts. In the total resolvent ω(z), the individual resolvents

come with a relative shift of the argument by iπ. Therefore the two cuts in the total

resolvent are now separated by iπ. On one cut the total resolvent jumps only due to ω1(z)

and on the other cut only due to ω2(z). From this we can deduce that

1

4
(ω+(z) + ω−(z)) = z (u cut) (4.14)

1

4
(ω+(z + iπ) + ω−(z + iπ)) = z (µ cut) (4.15)

– 8 –
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and so the resolvent ω(z) really does have square root branch cuts.3 Using (4.14), (4.15),4

it is straightforward to find a function of ω(z) which is regular everywhere except at

infinity, it is

g(Z) ≡ eω/2 + Z2e−ω/2. (4.16)

This function is regular and has limiting behavior

lim
Z→∞

g(Z) = Z2e−S/2, (4.17)

lim
Z→0

g(Z) = e−S/2. (4.18)

Therefore g(Z) can be written in terms of only one unknown parameter

g(Z) = e−S/2(Z2 + dZ + 1), (4.19)

where d is related to the end points of the cuts.

Solving (4.16) as a quadratic equation for eω/2 yields,

ω(Z)

2
= log

(
1

2

(
g(Z) −

√
g2(Z) − 4Z2

))
. (4.20)

It is easy to see that 1
2
(ω+(Z) + ω−(Z)) = log(Z2) and therefore (4.14) and (4.15) are

satisfied.

Now consider the function under the square root sign in (4.20). If Zi sets this to zero,

then 1/Zi will as well. Together with fact that the eigenvalues are all real, this implies

that the end points of each cut are the inverse of one another, i.e. the u cut is (a, 1/a), the

µ cut is (b, 1/b) for some a, b. Further, the relationship between our parameter d and the

end point of the cuts is easy to find

d = 2eS/2 −

(
a +

1

a

)
, (4.21)

d = −2eS/2 +

(
b +

1

b

)
. (4.22)

As discussed in the previous section, the spectral curve is two cylindrical sheets glued

together along these cuts. The center of the u cut is at z = 0 and the center of the µ cut

is located at z = iπ.

Let’s call the contour around the u cut the A1 cycle and the contour around the µ cut

the A2 cycle. There are also two dual B cycles. The B1 cycle starts at a point Λ at infinity

on the classical sheet where the resolvent is finite and goes to a point Λ̃ on the second sheet

through the u cut. The end points of the B2 cycle are the same but the contour goes from

one sheet to the other through the µ cut. The Riemann surface is depicted on the figure 2.

Now to find a, the end point of the u cut, one has to fix the period over the A1 cycle

1

4

∮

A1

ω(z)dz = πiS1. (4.23)

3due to the fact that the matrix model looks much like a 2-matrix model, the concern was that it may

be branched by a cubic root.
4which should be thought of as a principle value integral.

– 9 –
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Figure 2. Spectral curve for S3/Z2 matrix model.

Analogously, the period over the A2 cycle must be proportional to S2

1

4

∮

A2

ω(z)dz = πiS2. (4.24)

Actually given the normalization condition at z =−∞, only one of those periods is inde-

pendent. The integral over the A = A1 + A2 cycle is fixed by

1

4

∮

A
ω(z)dz = −πiω̃(−∞) = πiS, (4.25)

therefore to fix a we have exactly one integral to do, either the A1 period or A2 period.

These period integrals are hard to take in an explicit form, we will use a perturbative

method to calculate them.

The deformed CY is given explicitly from (4.20) with u ≡ z and v = (S − ω)/2 as

(ev − 1)(e2u+v − 1) + eS − 1 − deu+v = xy (4.26)

which is a particular complex structure deformation of F2 = xy (from eq. (2.4)). The

mirror of O(−K)→P
1 × P

1 is given by [26]

xy = eu + ev + e−t−u + e−s−u + 1 (4.27)

where t and s are complex structure moduli. There is a simple coordinate transformation

that brings (4.26) to (4.27). Explicitly v → v+ln d−S+u+iπ and u → u−ln d which gives

– 10 –
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us the following relationship between complex structure moduli and ’t Hooft parameters

t = ln d(S1, S2) (4.28)

s = 2 ln d(S1, S2) − S. (4.29)

It concludes that the matrix model spectral curve is indeed what we expect from

the mirror symmetry. In the section 6 we find pertubative expression for the complex

structure deformation parameter d(S1, S2) and for the free energy using the resolvent (4.20).

Perturbative calculations are valid when the values of ’t Hooft parameters are small. Notice

that the coordinate transformation above is not regular when ’t Hooft parameters goes to

0 since d is also small in this limit. Therefore one can not use a perturbative expression

for d to relate it to the Kahler parameters Re(t) and Re(s) using (4.28) and (4.29).

5 General S3/Zp lens spaces

We now generalize this analysis to the case S3/Zp. Here there are p sets of eigenvalues, we

label them by an index I ∈ {0, .., p − 1}. The measure factor is a product of two factors, a

self interacting term (∆1) and a term containing the interaction between different sets of

eigenvalues (∆2),

∆1(u) =
∏

I

∏

i6=j

(
2 sinh

(
uI

i − uI
j

2

))2

(5.1)

∆2(u) =
∏

I<J

∏

i,j

(
2 sinh

(
uI

i − uJ
j + dIJ

2

))2

, (5.2)

where dIJ = 2πi(I − J)/p. The potential has an overall factor of p compared to the S3

case,

V (u) = p
∑

I,i

(uI
i )

2

2
. (5.3)

We define individual resolvents for each set of the eigenvalues by

ωI(z) = gs

∑

i

coth

(
z − uI

i

2

)
(5.4)

and the total resolvent, which we are most interested in is

ω(z) =
∑

I

ωI

(
z −

2πiI

p

)
. (5.5)

The equation of motion for each eigenvalue is

puI
i = gs

∑

i6=j

coth

(
uI

i − uI
j

2

)
+ gs

∑

J 6=I

∑

j

coth

(
uI

i − uJ
j + dIJ

2

)
. (5.6)
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From the large N limit of this equation we can derive

1

2
ω2(z) − p

∑

I

(
z −

2πiI

p

)
ωI

(
z −

2πiI

p

)
= f(z), (5.7)

where f(z) is a regular function. From this it follows that

1

2

(
ω+

(
z +

2πiI

p

)
+ ω−

(
z +

2πiI

p

))
= pz, (I ′th cut). (5.8)

and so every cut is indeed a square root. Now we construct a regular function,

g(Z) = eω/2 + Zpe−ω/2, (5.9)

which has the limiting behavior,

lim
Z→∞

g(Z) = e−S/2Zp (5.10)

lim
Z→0

g(Z) = e−S/2 (5.11)

and is thus of the form,

g(Z) = e−S/2(Zp + dp−1Z
p−1 + ... + d1Z + 1). (5.12)

The function g(Z) depends on p−1 moduli dn, which could be found by evaluating the

period integrals

1

2

∮

AI

ω(z)dz = 2πiSI . (5.13)

Since we have already fixed the integral over the cycle A =
∑

I AI , there are only p−1

independent A-periods.

We can solve (5.9) for ω(Z) to get

ω(Z)

2
= log

(
1

2

(
g(Z) −

√
g2(Z) − 4Zp

))
, (5.14)

the function under the square root is a polynomial of the degree 2p, it has 2p distinct roots

that depend on only p−1 parameters. Thus the spectral curve consists of two cylinders

glued together along p cuts. Note that the center of the I’th cut is at the point z = 2πiI/p.

From (5.14) we see that the spectral curve is given by

(ev − 1)(epu+v − 1) + eS − 1 + ev
p−1∑

n=1

dnenu = 0, (5.15)

a complex structure deformation of Fp = 0 (from (2.4)).

– 12 –
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6 Free energy

An important check of our calculations is to use the resolvent we have found to calculate

the free energy perturbatively. In the appendix we perform this for p = 2, here we quote

our result, it agrees with that obtained in [10].

From (4.19)–(4.22) we can see that

ω(z)

4
= log

(
e−S/4

2
[
√

(Z + b)(Z + 1/b) −
√

(Z − a)(Z − 1/a)]

)
. (6.1)

It is not possible to obtain the parameter a as a explicit function of the ’t Hooft parameters

but we can find a perturbative series for it. We will do this by introducing two small

parameters ǫ1 and ǫ2 in the following way

a +
1

a
= 2(1 + ǫ1), b +

1

b
= 2(1 + ǫ2) (6.2)

and then performing the A period integrals as an expansion in ǫ1 and ǫ2. This will give

the ’t Hooft parameters as a power series in ǫ1, ǫ2 which we then invert. We find that

ǫ1 = S1 +
1

4
S1(S1 + S2) +

1

96
S1(3S

2
2 + 9S1S2 + 4S2

1) +

+
1

384
S1(S

3
2 + 6S2

2S1 + 7S2S
2
1 + 2S3

1)

and so we see that when S1 = 0, ǫ1 = 0 and so the second square root in (6.1) becomes a

complete square thus there is only one cut. This agrees with the fact that if the second cut

is empty the problem should reduce to CS theory on S3. The corresponding expression for

ǫ2 can be obtained from (B.15) by switching S1 and S2.

By performing this expansion of the resolvent in ǫ1 and ǫ2 and then calulcating the B

period integrals, we can get an expansion for the free energy. This analysis is also done in

the appendix, we quote the result

∂S1
F0(S1, S2) = −S1(1 + log 2) + 2S2 log 2 + S1 log S1 +

1

8
(S1 + S2)

2 + (6.3)

+
1

576
(3S3

2 + 18S2
2S1 + 9S2S

2
1 + 2S3

1) + O(S5) (6.4)

and there is a similar expression for ∂S2
F0 obtained by switching S1 and S2. This agrees

with the result of [10] where it was calculated using averages in the Gaussian model.

An important check is to see how the above formula reduces to the free energy (A.6)

of S3 model if S2 = 0. This means that the second set of eigenvalues (µα’s) disappear and

we have the following relationship between the two coupling constants

gS3

s =
g

S3/Z2

s

2
. (6.5)

This leads to

∂SFS3

0 (S) = 4∂S1
F

S3/Z2

0 (S1, S2)|S1=2S,S2=0 (6.6)

which is indeed satisfied.

– 13 –
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7 Conclusion

We have studied the matrix models that describe Chern-Simons theory on the Lens spaces

S3/Zp. We showed that the resolvent has p square root branch cuts and is thus best thought

of as a p-cut single matrix model. We have found the form of the resolvent and thus the

spectral curve. The spectral curve is a p− 1 genus Riemann surface with 4 points deleted.

We would like lend weight to the conjecture that T ∗(S3/Zp) undergoes a large N transition

to an Ap−1 fibration over P
1. We have shown that the spectral curve of the matrix model

is topologically equivalent to what is expected from the mirror symmetry. However, even

for p = 2 we have been unable to find an explicit map between Kahler structure moduli of

A-model and the periods of the B-model geometry. This must be due to the complexity of

the moduli space of the manifold. It would be interesting to understand this better.

We have also calculated the free energy for the case p = 2 by keeping one cut small

and expanding in the appropriate small parameter. We found agreement with [10] which

is a non-trivial check of our resolvent. We also showed that when one cut contains zero

eigenvalues that the resolvent and free energy reduce to the case of CS theory on S3, which

is a further check of our results.

Chern-Simons theory on various manifolds can be described by a matrix model [9] and

the technology introduced in this paper may find applications there. Finally, it it would

intriguing if a matrix model description of the topological vertex [27] could be found and

the matrix models studied in this paper may be a step in that direction.
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A Free energy for Chern-Simons on S3

In this section we will derive an expression for the leading order free energy (F0) in terms of

the B period integral for matrix model of CS theory on S3. There is a slight difference here

compared to the matrix model with measure on the Lie algebra due to the fact that there

the resolvent vanishes at infinity while for our case the resolvent is a non-zero constant at

infinity. Nevertheless we still find that ∂F0

∂S is proportional to the integral over the B cycle

as usual.

F0(S) is proportional to the action evaluated on-shell, if we add a single eigenvalue u,

the free energy changes by

∆F0(S) = −gsu
2 + g2

s

∑

i

log

(
2 sinh

(
u − ui

2

))2

(A.1)
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and the corresponding change in the ’t Hooft parameter is ∆S = gs. Therefore the deriva-

tive of the free energy with respect to S is

∂SF0(S) =
∆F0

gs
. (A.2)

Let’s take a point at infinity Λ, then the following relation holds

log

(
2 sinh

(
u − ui

2

))2

= −P

∫ Λ

u
coth

z − ui

2
dz − ui, (A.3)

where all terms except finite ones have been dropped. The last term is not present for Lie

algebra matrix models, here it is due to the fact that the resolvent is finite at Λ. However,

because (3.3) summed over i gives ∑

i

ui = 0 (A.4)

the last term in (A.3) vanishes when summed over i. Now it is easy to recognize the integral

over the resolvent in (A.2)

∂SF0(S) =

∫ Λ

u
dz(z − ω(z)) = −

∮

B

ω(z)

2
dz. (A.5)

The integral can be taken explicitly with the result

∂SF0(S) = −
π2

6
+

S2

2
+ Li2

(
e−S

)
, (A.6)

where Li2(x) is the Euler’s dilogarithm function

Li2(x) =

∞∑

n=1

xn

n2
. (A.7)

We will need this result when we calculate the corresponding free energy for CS theory on

S3/Z2.

B Free energy for S3/Z2Z(2)

We now extend this analysis to Lens spaces. Let’s look at how the action changes if one

eigenvalue is added. Then we divide that change by gs, which is the corresponding change

in the ’t Hooft parameter S1, use (A.2) and the identity

log

(
2 cosh

(
u − µα

2

))2

= −P

∫ Λ

u
tanh

z − µα

2
dz − µα, (B.1)

∑

i

ui +
∑

α

µα = 0. (B.2)

In this way the following expression is obtained

∂S1
F0(S1, S2) = −2

∮

B1

ω(z)

4
dz ≡ −2Π1 (B.3)
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Analogously, in order to get the derivative of the free energy with respect to S2 the

integral over the B2-cycle has to be taken. We found the resolvent to be

ω(z)

4
= log

(
M

2
[
√

(Z + b)(Z + 1/b) −
√

(Z − a)(Z − 1/a)]

)
(B.4)

with M = e−S/4 and

(Z + b)(Z + 1/b) = (Z − a)(Z − 1/a) + 4ZM−2. (B.5)

There is one more parameter to fix, the end point a of the u cut. The contour integral

over one of the A-cycles must be equal to the corresponding ’t Hooft parameter. We

consider the A1-cycle ∮

A1

ω(z)

4
dz = πiS1. (B.6)

The cycle A = A1 +A2 can be deformed to a contour around the logarithmic cut in the

Z variable, which is proportional to the value of the other branch of the resolvent at zero,

ω̃(0) = −S. Note that the resolvent on the second sheet is the same as in (B.4) except that

there is a plus sign between the two square roots. So the period integral over the A-cycle

is πiS. Alternatively, one can take periods over A1 and A2 cycles as independent ones and

obtain that ω̃(0) = −S as a consequence. The problem of calculating integrals like (B.6)

is very similar to the case of Lie algebra matrix models, in both cases they can be reduced

to elliptic integrals. It is not possible to obtain the end point of the cut a as an explicit

function of the ’t Hooft parameters S1 and S2, however if the size of the cuts is small then

one can expand in a power series of this small parameter much like the solution of two cut

Lie algebra matrix models. To this end it is better to make a and b being independent, fix

the A1 and A2 periods and recover a perturbative analog of the relation (B.5).

So we introduce two small parameters ǫ1 and ǫ2 in the following way

a +
1

a
= 2(1 + ǫ1), b +

1

b
= 2(1 + ǫ2). (B.7)

The resolvent up to a nonsingular term becomes

ω(z)

4
∼ log

(√
Z2 + 2Z(1 + ǫ2) + 1 −

√
Z2 − 2Z(1 + ǫ1) + 1

)
. (B.8)

To take the integral (B.6) one first expands ω/4 around ǫ2 = 0 keeping the size of the

A1 cycle finite. One square root disappears so the integrals become tractable. The method

is similar to one used in [3]. Note that at ǫ2 = 0 one cut shrinks to the zero size and the

resolvent matches one of Chern-Simons on S3 matrix models. We expand up to the fourth

power in ǫ2 and ǫ1,

S1 = 4 log µ(ǫ1) +
ǫ2

2µ(ǫ1)
A1 −−

ǫ2
2

8

(
1

2µ2(ǫ1)
A1 +

1

µ(ǫ1)
A2

)
+

+
ǫ3
2

24

(
1

2µ3(ǫ1)
A1 +

1

µ2(ǫ1)
A2 +

3

µ(ǫ1)
A3

)
−

−
ǫ4
2

32

(
5

µ(ǫ1)
A4 +

3

2µ2(ǫ1)
A3 +

1

2µ3(ǫ1)
A2 +

3

8µ4(ǫ1)
A1

)
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with µ(ǫ1) = 1 + ǫ1/2 and

A1 =
1

πi

∮

A1

√
(Z − a)(Z − 1/a)

1 + Z

dZ

Z
= 4(1 −

√
µ(ǫ1)), (B.9)

A2 =
1

πi

∮

A1

√
(Z − a)(Z − 1/a)

(1 + Z)3
dZ = −

ǫ1

4
√

µ(ǫ1)
, (B.10)

A3 =
1

πi

∮

A1

Z
√

(Z − a)(Z − 1/a))

(1 + Z)5
dZ = −

ǫ1(8 + 3ǫ1)

128µ3/2(ǫ1)
, (B.11)

A4 =
1

πi

∮

A1

Z2
√

(Z − a)(Z − 1/a)

(1 + Z)7
dZ. (B.12)

Since A4 shows up in the fourth order we only need its value at ǫ1 = 0 which is zero.

The term of order O(ǫ0
2) has been calculated using the known expression of S3 case. The

next step is to expand in ǫ1

S1 = ǫ1 −
1

4
ǫ1(ǫ2 + ǫ1) +

1

96
ǫ1(9ǫ

2
2 + 15ǫ1ǫ2 + 8ǫ2

1) −

−
1

128
ǫ1(5ǫ

3
2 + 12ǫ2

2ǫ1 + 11ǫ2ǫ
2
1 + 4ǫ3

1). (B.13)

To find a similar expression for the A2 period one just has to replace S1 by S2 and

switch ǫ1 and ǫ2 in the above formula. An important check is to recover relation (B.5)

written in the form

S = S1 + S2 = 2 log

(
1 +

ǫ2 + ǫ1

2

)
(B.14)

and expanded up to the fourth power in ǫ2 + ǫ1.

The two power series for the two ’t Hooft parameters can be inverted giving

ǫ1 = S1 +
1

4
S1(S1 + S2) +

1

96
S1(3S

2
2 + 9S1S2 + 4S2

1) +

+
1

384
S1(S

3
2 + 6S2

2S1 + 7S2S
2
1 + 2S3

1). (B.15)

The corresponding series for ǫ2 can be obtain from the above expression by switching S1

and S2.

In a similar fashion one can calculate periods over the B cycles. Let’s find the period

Π1 over the B1 cycle

Π1 =

∫ Λ

eΛ

ω(Z)

4

dZ

Z
, (B.16)

where Λ is a point at infinity on the first sheet and Λ̃ is a point at infinity on the second

sheet. Again, the first step is to expand the resolvent in power series of ǫ2. The integral in
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the O(ǫ0
2) term has been taken using the known result from CS theory on S3.

Π1 =
π2

6
−

1

2
log2 µ(ǫ1) − Li2

(
1

µ(ǫ1)

)
+

ǫ2

2µ(ǫ1)
B1 − (B.17)

−
ǫ2
2

8

(
1

2µ2(ǫ1)
B1 +

1

µ(ǫ1)
B2

)
+

+
ǫ3
2

24

(
1

2µ3(ǫ1)
B1 +

1

µ2(ǫ1)
B2 +

3

µ(ǫ1)
B3

)
−

−
ǫ4
2

32

(
5

µ(ǫ1)
B4 +

3

2µ2(ǫ1)
B3 +

1

2µ3(ǫ1)
B2 +

3

8µ4(ǫ1)
B1

)
,

where

B1 =

∫ Λ

eΛ

√
(Z − a)(Z − 1/a)

1 + Z

dZ

Z
, (B.18)

B2 =

∫ Λ

eΛ

√
(Z − a)(Z − 1/a)

(1 + Z)3
dZ, (B.19)

B3 =

∫ Λ

eΛ

Z
√

(Z − a)(Z − 1/a)

(1 + Z)5
dZ, (B.20)

B4 =

∫ Λ

eΛ

Z2
√

(Z − a)(Z − 1/a)

(1 + Z)7
dZ. (B.21)

Then one sends Λ to infinity and takes the finite part, which is then expanded in powers

of ǫ1

B1 = − log 16 +
1

2
(−1 + log(ǫ1/8))ǫ1 +

1

32
(−1 − 2 log(ǫ1/8))ǫ

2
1 + (B.22)

+
1

384
(5 + 6 log(ǫ1/8))ǫ

3
1 + O(ǫ4

1),

B2 =
1

2
+

1

8
ǫ1 log(ǫ1/8) −

1

32
(1 + log(ǫ1/8))ǫ

2
1 + O(ǫ3

1), (B.23)

B3 =
1

16
+

1

64
(1 − 2 log(ǫ1/8))ǫ1 + O(ǫ2

1), (B.24)

B4 =
1

96
+ O(ǫ1). (B.25)

Combining this all together and plugging in the expressions for ǫ1 and ǫ2 as functions of

S1 and S2 and using (B.3) we get

∂S1
F0(S1, S2) = −S1(1 + log 2) + 2S2 log 2 + S1 log S1 +

1

8
(S1 + S2)

2 + (B.26)

+
1

576
(3S3

2 + 18S2
2S1 + 9S2S

2
1 + 2S3

1) + O(S5), (B.27)

which is in agreement with [10]. Note there is no terms of order O(S4).
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